AEDC celebrates successful launch of NASA Orion

By Deidre Ortiz
ATA Public Affairs

NASA achieved a major milestone in completing the Orion spacecraft’s first voyage to space recently.

Having had a hand in testing the Orion Multi-Purpose Crew Vehicle, AEDC is also celebrating this accomplishment. Mounted atop the United Launch Alliance Delta IV Heavy rocket, Orion launched from Cape Canaveral Air Force Station’s Space Launch Complex 37 at 7:05 a.m. EST on Dec. 5.

AEDC project engineer Na- dan Payne, who coordinated the testing for Orion in support of NASA Exploration Flight Test-1 (EFT-1), stated he’s pleased the flight went smoothly even because with the amount of testing that went into propelling the spacecraft, these events are unpredictable.

“Space flight is still risky, so to have a successful first launch was a relief,” he said “there are a lot of people looking over data we took here and doing checks to ensure data quality, but stuff still happens.”

Payne’s sentiments of the flight were similar to those of Mark Guyer, Orion program manager.

“We had the models and we have the best people on the planet, but until you fly it, you don’t know,” Guyer said.

A 5.9 percent scale model of the Orion crew capsule mounted on the Delta IV booster was tested in the 16-foot transonic wind tunnel at AEDC in preparation for the spacecraft’s initial flight. The AEDC test team, along with a United Launch Alliance (ULA) team led by Mike Milhoan “is truly an ‘engineer’s engineer,’” Layne said. “The result is always a fundamentally sound solution that works the first time. Additionally, Al is able to effectively communicate on broad range of technical topics to everyone from engineering interns to AEDC’s senior leaders to ATA’s Engineer of the Year award for 2014, thanked his colleagues for their contributions, which he says allowed him the opportunity to be presented with this prestigious honor.

“It’s not one individual,” he said. “It’s a’s always a team effort to get a problem solved.”

He explained that his job duties entail resolving issues for the control systems on base, and often times it takes a group of people putting their heads together to come up with the solution.

His support and willingness to listen to our concerns has not gone unnoticed. According to Chris Layne, branch manager of Instrumentation and Control Services, Milhoan “is truly an engineer’s engineer.”

“He is able to take even the most complex technical problem back to the first principles of physics and calculus in order to find the optimal solution,” Layne said. “The result is always a fundamentally sound solution that works the first time. Additionally, Al is able to effectively communicate on broad range of technical topics to everyone from engineering interns to AEDC’s senior leaders to ATA’s Engineer of the Year award for 2014, thanked his colleagues for their contributions, which he says allowed him the opportunity to be presented with this prestigious honor.

“It’s not one individual,” he said. “It’s a’s always a team effort to get a problem solved.”

He explained that his job duties entail resolving issues for the control systems on base, and often times it takes a group of people putting their heads together to come up with the solution.

His support and willingness to listen to our concerns has not gone unnoticed. According to Chris Layne, branch manager of Instrumentation and Control Services, Milhoan “is truly an engineer’s engineer.”

“He is able to take even the most complex technical problem back to the first principles of physics and calculus in order to find the optimal solution,” Layne said. “The result is always a fundamentally sound solution that works the first time. Additionally, Al is able to effectively communicate on broad range of technical topics to everyone from engineering interns to AEDC’s senior leaders to ATA’s Engineer of the Year award for 2014, thanked his colleagues for their contributions, which he says allowed him the opportunity to be presented with this prestigious honor.

“It’s not one individual,” he said. “It’s a’s always a team effort to get a problem solved.”

He explained that his job duties entail resolving issues for the control systems on base, and often times it takes a group of people putting their heads together to come up with the solution.

His support and willingness to listen to our concerns has not gone unnoticed. According to Chris Layne, branch manager of Instrumentation and Control Services, Milhoan “is truly an engineer’s engineer.”
AEDC ready to participate in Relay for Life

By DeW Wolfe

AEDC Communications

This year’s Coffee Country Relay For Life is April 24 in Monteagle. AEDC employees are encouraged to participate in the 2015 fundraiser for the American Cancer Society.

Relay For Life is not just an event; it is an event to raise money and awareness for cancer research. A new twist to Relay For Life this year is that it starts at 6 p.m. Friday and ends at midnight Friday night – so it is just a six-hour event rather than an all-night event.

AEDC CMDR and his wife Sharon and I, belt AEDC employees, will be participating in the fundraising event on behalf of the Carter family. The Carter family has been an active supporter of the race and has more than $33,000 for cancer research.

According to the Carter family, Steve Pearson, High Mach Staff, Jason Austin, High Mach Manager, and Raquel Mach, Editor.

AEDC Commander

Rear Adm. Arnold Engineering Development Complex

By TCIRACE Communications

January 12, 2015

Raising Cervical Cancer Awareness this January

According to the Centers for Disease Control and Prevention, April is Cervical Health Awareness Month. The focus of Cervical Health Awareness Month is to educate the American people about the importance of cervical cancer screenings. The purpose is to increase the likelihood of early detection when cervical cancer is most treatable. The Centers for Disease Control and Prevention are working with community health organizations, local health departments, and Promotes early detection of cervical cancer and improve cervical cancer screening rates.

This year’s theme is “Raising Awareness through Cervical Health Awareness Month.” The theme is to encourage women to get screened and to seek prevention services. Women who are 18 years or older should get a screening test every 2 to 3 years. Women who are 21 to 29 years old should get a screening test every 3 years. Women who are 30 to 65 years old should get a screening test every 5 years. Women who are 65 years or older should get a screening test every 3 years. Women who are 18 years or older and have a history of abnormal Pap tests or abnormal cervical tissue or abnormal cervices should get a screening test every 2 years.

Cervical cancer is caused by the human papillomavirus (HPV). HPV is the most common sexually transmitted disease, and according to the CDC, the cause of most cervical cancers is HPV. In addition, the CDC recommends that women should get cervical cancer screenings. The American Cancer Society recommends that women should get cervical cancer screenings at least 15 years after the age of 18. Women who have a history of cervical cancer should get cervical cancer screenings at least 18 years after the age of 15. Women who are 18 years or older should get a screening test every 2 to 3 years. Women who are 21 to 29 years old should get a screening test every 3 years. Women who are 30 to 65 years old should get a screening test every 5 years. Women who are 65 years or older should get a screening test every 3 years. Women who are 18 years or older and have a history of abnormal Pap tests or abnormal cervical tissue or abnormal cervices should get a screening test every 2 years.

Cervical cancer is caused by the human papillomavirus (HPV). HPV is the most common sexually transmitted disease, and according to the CDC, the cause of most cervical cancers is HPV. In addition, the CDC recommends that women should get cervical cancer screenings. The American Cancer Society recommends that women should get cervical cancer screenings at least 15 years after the age of 18. Women who have a history of cervical cancer should get cervical cancer screenings at least 18 years after the age of 15. Women who are 18 years or older should get a screening test every 2 to 3 years. Women who are 21 to 29 years old should get a screening test every 3 years. Women who are 30 to 65 years old should get a screening test every 5 years. Women who are 65 years or older should get a screening test every 3 years. Women who are 18 years or older and have a history of abnormal Pap tests or abnormal cervical tissue or abnormal cervices should get a screening test every 2 years.

Cervical cancer is caused by the human papillomavirus (HPV). HPV is the most common sexually transmitted disease, and according to the CDC, the cause of most cervical cancers is HPV. In addition, the CDC recommends that women should get cervical cancer screenings. The American Cancer Society recommends that women should get cervical cancer screenings at least 15 years after the age of 18. Women who have a history of cervical cancer should get cervical cancer screenings at least 18 years after the age of 15. Women who are 18 years or older should get a screening test every 2 to 3 years. Women who are 21 to 29 years old should get a screening test every 3 years. Women who are 30 to 65 years old should get a screening test every 5 years. Women who are 65 years or older should get a screening test every 3 years. Women who are 18 years or older and have a history of abnormal Pap tests or abnormal cervical tissue or abnormal cervices should get a screening test every 2 years.

Cervical cancer is caused by the human papillomavirus (HPV). HPV is the most common sexually transmitted disease, and according to the CDC, the cause of most cervical cancers is HPV. In addition, the CDC recommends that women should get cervical cancer screenings. The American Cancer Society recommends that women should get cervical cancer screenings at least 15 years after the age of 18. Women who have a history of cervical cancer should get cervical cancer screenings at least 18 years after the age of 15. Women who are 18 years or older should get a screening test every 2 to 3 years. Women who are 21 to 29 years old should get a screening test every 3 years. Women who are 30 to 65 years old should get a screening test every 5 years. Women who are 65 years or older should get a screening test every 3 years. Women who are 18 years or older and have a history of abnormal Pap tests or abnormal cervical tissue or abnormal cervices should get a screening test every 2 years.

Cervical cancer is caused by the human papillomavirus (HPV). HPV is the most common sexually transmitted disease, and according to the CDC, the cause of most cervical cancers is HPV. In addition, the CDC recommends that women should get cervical cancer screenings. The American Cancer Society recommends that women should get cervical cancer screenings at least 15 years after the age of 18. Women who have a history of cervical cancer should get cervical cancer screenings at least 18 years after the age of 15. Women who are 18 years or older should get a screening test every 2 to 3 years. Women who are 21 to 29 years old should get a screening test every 3 years. Women who are 30 to 65 years old should get a screening test every 5 years. Women who are 65 years or older should get a screening test every 3 years. Women who are 18 years or older and have a history of abnormal Pap tests or abnormal cervical tissue or abnormal cervices should get a screening test every 2 years.

Cervical cancer is caused by the human papillomavirus (HPV). HPV is the most common sexually transmitted disease, and according to the CDC, the cause of most cervical cancers is HPV. In addition, the CDC recommends that women should get cervical cancer screenings. The American Cancer Society recommends that women should get cervical cancer screenings at least 15 years after the age of 18. Women who have a history of cervical cancer should get cervical cancer screenings at least 18 years after the age of 15. Women who are 18 years or older should get a screening test every 2 to 3 years. Women who are 21 to 29 years old should get a screening test every 3 years. Women who are 30 to 65 years old should get a screening test every 5 years. Women who are 65 years or older should get a screening test every 3 years. Women who are 18 years or older and have a history of abnormal Pap tests or abnormal cervical tissue or abnormal cervices should get a screening test every 2 years.
Lamb retires after 41 years of service at AEDC

Bill Lamb, right, receives a Certificate of Service from the United States Air Force for 41 years of federal civilian service during his retirement ceremony at AEDC on Dec. 16. Lamb retired as the deputy director of the Air Force Test Command (AFTC/PZ) at Arnold Air Force Base. Immediate family members in attendance include Lamb’s wife Deborah, sons Shane and Trenton Bussell, and daughter Angela Byford. Pictured with Duesterhaus is Col. Timothy West, the AEDC Test Operations Division director, who served as the retiring official. (Photo by Jacqueline Cowan)

Ellen Bussell, left, receives a Certificate of Service from the United States Air Force for 41 years of federal civilian service at AEDC. (Photo by Jacqueline Cowan)

Duesterhaus retires after 33 years of service at AEDC

Dave Duesterhaus, right, receives a Certificate of Service from the United States Air Force for 33 years of federal civilian service during his retirement ceremony at AEDC on Dec. 17. Duesterhaus’s career at AEDC spans 42 years as a contract and civilian employee. While at AEDC he served as the first U.S. Air Force director for the National Full-Scale Aerodynamic Complex (NFAC) at the NASA Ames Research Center, Moffett Field, Calif. He retires as the chief of the Test Technology Branch with the AEDC Test Operations Division. Immediate family members in attendance include Duesterhaus’s wife Debra, some Scott Duesterhaus and Trenton Bussell. Pictured with Duesterhaus is Col. Timothy West, the AEDC Test Operations Division director, who served as the retiring official. (Photo by Jacqueline Cowan)

Col. Tom retires from Air Force after 25 years of service

Col. Patrick Tom is retiring from the U.S. Air Force after 25 years of service. A Chief of Staff of the Air Force-designated Senior Material Leader, Col. Tom has served as the Chief of the Test Operations Division at AEDC prior to his employment in March 2014. To recognize his many achievements, family, friends and coworkers were all invited to attend a celebration in his honor. The presiding official for the ceremony was Major General Arnold W. Bunch Jr., Commander of the Air Test and Technology Center. Tom’s family in attendance included his wife Roberta and brother Donald. His mother Nancy was also able to watch the ceremony from Honolulu, Hawaii, via Skype. Pictured is Col. Tom, right, accepting the Legion of Merit Medal from Maj. Gen. Bunch. (Photo by Jacqueline Cowan)
A method for measuring the surface temperature of blades and vanes in the hot section of turbine engines using a thermographic phosphor (TGP) technique was developed by NASA Glenn Research Center in collaboration with AEDC and the Propulsion Instrumentation Working Group (PIWG). The technique requires coating the blade and vane surfaces with a phosphor material appropriate for the targeted temperature range. The phosphor material is excited by a pulsed laser beam and the temperature determined from the time-rate-of-decay of the luminescence signal.

Thermographic phosphor techniques were demonstrated in the exhaust flow of an AEDC J85 afterburning engine at the University of Tennessee Space Institute Propulsion Research Facility. This photo shows the test article mounted behind the J85 engine. (Photo provided)

Engineers at AEDC Hypervelocity Wind Tunnel 9 perform experiments on a large 7-degree cone test article at Mach 10 to improve the understanding of hypersonic boundary layer transition in testing and evaluation (T&E) facilities. Testing was made possible under the Test Resource Management Center (TRMC) and the Air Force office of Scientific Research (AFOSR) funded Hypersonic Center of Testing Excellence (CoTE). Pictured is AEDC project engineer George Moraru examining the illuminated temperature sensitive paint (TSP) coating on the cone prior to testing. (Photo by Michael Smith)

AEDC 2014 Year in Review

TESTS AND SUPPORT...

AEDC teamed with NASA, The U.S. Air Force Space and Missile Systems Center (SMC), the University of Florida and The Aerospace Corporation to perform a hypervelocity destructive impact test of a modern satellite to help scientists better understand the effects of space collisions. The satellite, called the Debrisat, was a non-functional full-scale representation of a modern satellite. It was designed and fabricated by the University of Florida and supplied to AEDC for destruction. The test utilized AEDC’s Range G light gas launcher, which is capable of firing projectiles over one pound at speeds of more than 15,000 mph. The Debrisat is shown here in the Range G target tank surrounded by “Soft Catch.” (Photo by Jacqueline Cowan)

A model of an A-10 Thunderbolt II underwent a pressure-sensitive paint (PSP) test in the 14-foot transonic wind tunnel (16T) at AEDC. PSP was used to obtain surface pressure data on the model. The photo above shows a rear view of the A-10 model during testing in 16T. The A-10 is the only U.S. Air Force aircraft designed to be specifically used for close air support. The aircraft is notorious for its maneuverability at low speeds and low altitudes and its accurate weapons delivery. (AEDC Photo)

AEDC 2014 Year in Review

TESTS AND SUPPORT...

A method for measuring the surface temperature of blades and vanes in the hot section of turbine engines using a thermographic phosphor (TGP) technique was developed by NASA Glenn Research Center in collaboration with AEDC and the Propulsion Instrumentation Working Group (PIWG). The technique requires coating the blade and vane surfaces with a phosphor material appropriate for the targeted temperature range. The phosphor material is excited by a pulsed laser beam and the temperature determined from the time-rate-of-decay of the luminescence signal. Thermographic phosphor techniques were demonstrated in the exhaust flow of an AEDC J85 afterburning engine at the University of Tennessee Space Institute Propulsion Research Facility. This photo shows the test article mounted behind the J85 engine. (Photo provided)

Engineers at AEDC Hypervelocity Wind Tunnel 9 perform experiments on a large 7-degree cone test article at Mach 10 to improve the understanding of hypersonic boundary layer transition in testing and evaluation (T&E) facilities. Testing was made possible under the Test Resource Management Center (TRMC) and the Air Force office of Scientific Research (AFOSR) funded Hypersonic Center of Testing Excellence (CoTE). Pictured is AEDC project engineer George Moraru examining the illuminated temperature sensitive paint (TSP) coating on the cone prior to testing. (Photo by Michael Smith)

AEDC 2014 Year in Review

TESTS AND SUPPORT...

AEDC teamed with NASA, The U.S. Air Force Space and Missile Systems Center (SMC), the University of Florida and The Aerospace Corporation to perform a hypervelocity destructive impact test of a modern satellite to help scientists better understand the effects of space collisions. The satellite, called the Debrisat, was a non-functional full-scale representation of a modern satellite. It was designed and fabricated by the University of Florida and supplied to AEDC for destruction. The test utilized AEDC’s Range G light gas launcher, which is capable of firing projectiles over one pound at speeds of more than 15,000 mph. The Debrisat is shown here in the Range G target tank surrounded by “Soft Catch.” (Photo by Jacqueline Cowan)

A model of an A-10 Thunderbolt II underwent a pressure-sensitive paint (PSP) test in the 14-foot transonic wind tunnel (16T) at AEDC. PSP was used to obtain surface pressure data on the model. The photo above shows a rear view of the A-10 model during testing in 16T. The A-10 is the only U.S. Air Force aircraft designed to be specifically used for close air support. The aircraft is notorious for its maneuverability at low speeds and low altitudes and its accurate weapons delivery. (AEDC Photo)

AEDC 2014 Year in Review

TESTS AND SUPPORT...

A method for measuring the surface temperature of blades and vanes in the hot section of turbine engines using a thermographic phosphor (TGP) technique was developed by NASA Glenn Research Center in collaboration with AEDC and the Propulsion Instrumentation Working Group (PIWG). The technique requires coating the blade and vane surfaces with a phosphor material appropriate for the targeted temperature range. The phosphor material is excited by a pulsed laser beam and the temperature determined from the time-rate-of-decay of the luminescence signal. Thermographic phosphor techniques were demonstrated in the exhaust flow of an AEDC J85 afterburning engine at the University of Tennessee Space Institute Propulsion Research Facility. This photo shows the test article mounted behind the J85 engine. (Photo provided)

Engineers at AEDC Hypervelocity Wind Tunnel 9 perform experiments on a large 7-degree cone test article at Mach 10 to improve the understanding of hypersonic boundary layer transition in testing and evaluation (T&E) facilities. Testing was made possible under the Test Resource Management Center (TRMC) and the Air Force office of Scientific Research (AFOSR) funded Hypersonic Center of Testing Excellence (CoTE). Pictured is AEDC project engineer George Moraru examining the illuminated temperature sensitive paint (TSP) coating on the cone prior to testing. (Photo by Michael Smith)
January 12, 2015

AEDC 2014 Year in Review

TESTS AND SUPPORT...

In light of the success of several joint projects, AFRL leadership decided to extend the organization’s partnership with AEDC by establishing a new hypersonic research branch, to be known as the High Speed Experimentation Branch, at Arnold AFB. The branch is directed by the AFRL Aerospace Systems Directorate, the home office for which is located at Wright-Patterson AFB. Glenn Liston, AFRL High Speed Systems Science and Technology advisor, is heading the High Speed Experimentation Branch as branch chief.

AEDC is modifying its Aerodynamic and Propulsion Test Unit (APTU) in preparation for the first ever direct-connect tests of larger scale scramjet engines. Once the upgrades are completed, the facility will be fully capable of supporting the Air Force Research Laboratory (AFRL) Medium Scale Critical Components (MSCC) direct-connect test program. Test articles such as the Defense Advanced Research Projects Agency (DARPA) Falcon Combined Cycle Engine Test (FaCET), pictured, have been successfully ground tested in the Aerodynamic and Propulsion Test Unit (APTU). (Photo by Rick Goodfriend)

New software is available to aid in providing acquisition support for Next Generation of Advanced Aircraft. The CREATE program (Computational Research and Engineering For Acquisition Tools and Environments), an initiative funded by the Office of Secretary of Defense High Performance Computing (HPC) Modernization, is being used to develop next generation computational engineering test sets for acquisition program engineers. The tools allow program engineers to take advantage of the growth in supercomputer power. In the diagram, the first image is of a rotor fan surface geometry that was the result of the laser scan. The second image shows computational fluid dynamics (CFD) mesh that was generated from the surface and then used to produce the CFD results. The third image shows a portion of the CFD flowfield and the pressure of the air as it goes through the fan. (Image Provided)

A highly successful accelerated mission test (AMT) of Pratt & Whitney’s F135 conventional take-off and landing/carrier variant (CTOL/CV) engine was recently completed in the Sea Level 3 test cell (SL-3) at AEDC. A Total Accumulated Cycle (TAC) count of 2,400, with record TAC accumulation of 80-90 per day was accomplished during the AMT of this F135 engine, found in versions of the F-35 Lightning II Joint Strike Fighter used by the U.S. Air Force and Navy. Pictured is a similar test of the F135 in the AEDC SL-3 test cell. (Photo by Rick Goodfriend)

A test demonstrating Innovative Scientific Solution Incorporated’s (ISSI) dynamic pressure sensitive paint (PSP) was conducted in the 16-foot transonic wind tunnel at AEDC. The effort was funded by the Air Force through a Rapid Innovation Funding grant for Air-Delivered Weapon Certification Cost Reduction. The goal is to provide a capability that can improve computational fluid dynamics (CFD) modeling simulation of store separation in order to reduce the need for wind tunnel and flight test drop testing during the certification process. ISSI researchers were joined by engineers from AEDC, Lockheed Martin and Euclidian Optics for the program. The dynamic PSP was used on the Lockheed Martin V7 model, a 1980s Advanced Tactical Fighter concept, to measure the acoustic pressure levels in the bay. The model glows bright red as a result of the fluorescent light emitted by the PSP. (AEDC Photo by Marvin Sellers)
As gas-turbine and hypersonic propulsion systems advance, so must the diagnostic measurement systems used in testing them. The Coherent Anti-Stokes Raman Scattering (CARS) Spectroscopy System is a development of the Small Business Innovative Research (SBIR) program used to make point source temperature measurements in extreme environments, such as in the flowfield of an operating turbine engine. CARS simultaneously measures temperature and multiple gas concentrations with a high degree of accuracy. The CARS technique uses three laser beams, one red and two green, and focuses the three beams into one location within a gas flowfield.

Pictured are two hollow-core fibers (pink-colored at right) providing remote CARS measurements at the exhaust plane of the J85 engine at UTSI. (Photo provided)

Military and commercial aircraft engine developers rely on simulated altitude testing conducted at AEDC’s Engine Test Facility (ETF) for their research and development of engine capabilities. Because the condition of the test facility determines the quality of the test two of the intercoolers that aid in handling engine exhaust in the C-Plant Exhaust System were upgraded. The aging cooling coils and demister pads in the WC11 and WC12 Intercoolers located in the C-Plant Exhaust yard area were replaced. Pictured are AEDC workers inspecting the intercooler coils. (AEDC Photo)
Round-2 for the CyberPatriot VII competition began with high scoring on Nov. 14 as three high school CyberPatriot teams battled for five places amongst 1,200 teams.

The CyberPatriot team, two from Coffee County “AEDC” Composite Squadron in Tullahoma, competed with the assistance of the AEDC Science, Technology, Engineering and Mathematics (STEM) program.

Three local STEM teams participate in state CyberPatriot competition

By Rachel March

Al Milhoan, ATA control system architect, was chosen as the recipient of the ATA Engineer of the Year Award for 2014. Milhoan was selected for this honor to recognize his contributions and dedication to his work at AEDC. Pictured in ATA director of Test and Evaluation Dr. Rob McAmis presenting Milhoan, right, with the award at the ATA Awards Banquet. (Photo by Rick Goodfriend)

The competition places teams of high school and middle school students in the position of newly hired information technology professionals tasked with managing the network of a small company. In the rounds of competition, teams are given a set of virtual images that represent operating systems and are tasked with finding cybersecurity vulnerabilities within the images and hardening the system while maintaining critical services.

Regarding the Round-2 competition in the December issue of the Air Force Association CyberPatriot newsletter, The CyberSenti-quiz stood in the way of more than 1,200 teams receiving their goals. Most teams pushed through the medium difficulty Ubuntu and Viota images, but the most difficult test came with the Windows 8 image. It was the hardest image so far in the competition and was designed to break out the many high scoring teams into their tiers. The Cisco Networking Quiz challenged the team’s time management skills as well as networking skills.

Milhoan has his wife with the three Labradors they adopted not long before he was diagnosed with cancer. (Photo provided)
AEDC personnel volunteer at the Area 13 Special Olympics on April 24 at the Tullahoma High School stadium where AEDC Commander Col. Raymond Toth (left) runs with torch runner Tim Sullenger of Moore County. AEDC volunteers cheer for many Olympic participators. (Photos by Rick Goodfriend)

AEDC personnel and their families viewed muscle cars, cruisers and hotrods at the Complex’s 2014 Cruise-In last month. The third annual display allowed personnel to showcase their cars as well as participate in demonstrations. (Photos by Jacqueline Cowan)

Arnold Community Council (ACC) members and AEDC leadership gathered to hear Tennessee Governor Bill Haslam at the ACC annual dinner on Oct. 23 in Manchester. Arnold Community Council (ACC) 2015 President Jim Jolliffe (left) accepts the gavel from former ACC President Ben Craig symbolizing the change in the ACC leadership. The change took place at the ACC Annual Dinner. (Photo provided)

AEDC personnel volunteer at the Area 13 Special Olympics on April 24 at the Tullahoma High School stadium where AEDC Commander Col. Raymond Toth (left) runs with torch runner Tim Sullenger of Moore County. AEDC volunteers cheer for many Olympic participants. (Photos by Rick Goodfriend)

It was announced that Dr. Mark Mehalic accepted the position of AEDC executive director. Mehalic made the transition to Arnold AFB from Kirtland AFB, N.M., where he was serving as director for Engineering and Technology Management at the base’s Air-Force Nuclear Weapons Center.

Jeff Hears, who has been serving as Jacobs Technology vice president, stepped into the role of ATA deputy general manager, formerly held by Phil Stich, on June 16.

Twenty members of the Arnold Community Council (ACC) visited the U.S. Capitol to talk with lawmakers about AEDC and the vital role the Complex plays in national defense. The group also worked with Congressmen Diane Black to promote the Congressional Range and Test Center Caucus (CRCTC), Congressmen Diane Black (far left) talks to (l-r) ACC Past President Ben Craig, ACC member Mike Wiedemer and ACC President Jim Jolliffe at the annual breakfast the group sponsors at the Capitol. (Photo provided)

Dr. Mica Endsley (left), the U.S. Air Force Chief Scientist, visited AEDC during the 63rd anniversary of the Complex. She toured one-of-a-kind aerospace ground testing facilities and spoke with Wayne Hawkins (right), the AEDC Propulsion Wind Tunnel Test Branch Technical Director, about the hypersonic wind tunnel test capabilities of the von Karman Gas Dynamics Test Facility (VKF). She also toured the AEDC Aerodynamic and Propulsion Test Unit for testing high speed propulsion systems and materials and the Propulsion Wind Tunnel 16-foot Supersonic Wind Tunnel, an aerodynamic testing facility. (Photo by Jacqueline Cowan)

Jeff Hears, who has been serving as Jacobs Technology vice president, stepped into the role of ATA deputy general manager, formerly held by Phil Stich, on June 16.

Arnold Community Council (ACC) members and AEDC leadership gathered to hear Tennessee Governor Bill Haslam at the ACC annual dinner on Oct. 23 in Manchester. Arnold Community Council (ACC) 2015 President Jim Jolliffe (left) accepts the gavel from former ACC President Ben Craig symbolizing the change in the ACC leadership. The change took place at the ACC Annual Dinner. (Photo by Rick Goodfriend)
By Debbie Ortiz

A C A P L U S AWA R D

The Jacobs Engineering Foundation awards up to 20 academic scholarships of up to $3,000 annually to qualified, eligible family members of Jacobs employees.

Mary Forde, daughter of ATA employee Bob Forde, was recently announced as a recipient of one of the academic scholarships for 2014. She is a senior majoring in biomedical chemical engineering.

Mary mentioned she was unsure of her career choice when starting college and took a few majors before settling on biomedical chemical engineering, which she is now enjoying.

“I would like to do research and development,” she said. “I have a professor currently doing biomedical research, and learning from her about what she does, I’ve become really interested in it.”

She expressed thanks to the Jacobs Engineering Foundation for its reception and support of her academic studies.

“arly education is critical to children.

The scholarship is made available to students majoring in any of the science and technology fields of study at an accredited four-year uni-

versity worldwide.

Jacobs Scholarship Award recipient announced